#94: Why don't you like notebooks?
Published Thu, Sep 6, 2018,
recorded Wed, Sep 5, 2018
Sponsored by DigialOcean -- pythonbytes.fm/digitalocean
Brian #1: Python Patterns
- @brandon_rhodes vs GOF
Michael #2: Arctic: Millions of rows a sec (time data)
- Arctic is a high-performance datastore for numeric data. It supports Pandas, numpy arrays and pickled objects out-of-the-box, with pluggable support for other data types and optional versioning.
- Arctic can query millions of rows per second per client, achieves ~10x compression on network bandwidth, ~10x compression on disk, and scales to hundreds of millions of rows per second per MongoDB instance.
- Arctic has been under active development at Man AHL since 2012.
- Super fast, some latency numbers:
- 1xDay Data 4ms for 10k rows, vs 2,210 ms from SQL Server)
- Tick Data 1s for 3.5 MB (Python) or 15 MB (Java) vs 15-40sec from “other tick”
- Versioned data
- Built on MongoDB
- Slides
- Based on pandas
- Tested with pytest
Brian #3: PyCon Australia videos
- How To Publish A Package On PyPI
- Mark Smith @judy2k
Michael #4: GAE: Introducing App Engine Second Generation runtimes and Python 3.7
- Today, Google Cloud is announcing the availability of Second Generation App Engine standard runtimes, a significant upgrade to the platform that allows you to easily run web apps using up-to-date versions of popular languages, frameworks and libraries.
- Python 3.7 is one of the new Second Generation runtimes that we announced at Cloud Next.
- Based on technology from the gVisor container sandbox, these Second Generation runtimes eliminate many previous App Engine restrictions, giving you the ability to write portable web apps and microservices that take advantage of App Engine's unique auto-scaling, built-in security and pay-per-use billing model.
- This new runtime allows you to take advantage of Python's vibrant ecosystem of open-source libraries and frameworks. While the Python 2 runtime only allowed the use of specific versions of whitelisted libraries, Python 3 supports arbitrary third-party libraries, including those that rely on C code and native extensions. Just add Django 2.0, NumPy, scikit-learn or your library of choice to a
requirements.txt
file. App Engine will install these libraries in the cloud when you deploy your app.
Brian #5: I don’t like notebooks
Michael #6: PEP 8000 -- Python Language Governance Proposal Overview
- This PEP provides an overview of the selection process for a new model of Python language governance in the wake of Guido's retirement. Once the governance model is selected, it will be codified in PEP 13.
- PEPs in the lower 8000s describe the general process for selecting a governance model.
- PEPs in the 8010s describe the actual proposals for Python governance.
Extras
- Free Brian Granger ACM webcast on Jupyter Friday
- TIOBE jump to #3: https://www.tiobe.com/tiobe-index/